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Keywords                                         ABSTRACT 
 

 

Although control charts are very common to monitoring process changes, 
they usually do not indicate the real time of the changes. Identifying the real 
time of the process changes is known as change-point estimation problem. 
There are a number of change point models in the literature; however most 
of the existing approaches are dedicated to normal processes. In this paper 
we propose a novel approach based on clustering techniques to estimate 
Shewhart control chart change-point when a sustained shift is occurrs in the 
process mean. For this purpose we devise a new clustering mechanism, a 
new similarity measure and a new objective function. The proposed 
approach is not only capable of detecting process change-points, but also 
automatically estimates the true values of the out-of-control parameters of 
the process. We also compare the performance of the proposed approach 
with existing methods. 
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11..  IInnttrroodduuccttiioonn∗∗  

Control charts are widely used to monitor changes 
in processes by investigating the potential causes of 
variability. The control chart is a graphical display of 
the quality characteristic that has been measured or 
computed from a sample versus the sample number or 
time. The chart contains three parts: a center line that 
represents the average value of the quality 
characteristic corresponding to in-control state, and 
two other lines, called upper control limit (UCL) and 
lower control limit (LCL), which are chosen to assure 
that if the process is in-control, nearly all of the sample 
points will fall between them (Montgomery [1]). When 
a control chart produces an out-of-control signal, a 
search must be initiated to find the assignable cause of 
the out-of-control state. Knowing the exact time of a 
change in a process restricts the range of the search for 
the assignable cause which in turn accelerates the 
assignable cause identification and appropriate 
corrective action implementation. 
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Change-point models focus on finding the point in time 
where the process has changed in some fashion. Fig. 1 
shows a typical shift in the mean of a normal process. 
The output of this process is modeled by two normal 
distributions. The process follows the normal 
distribution ( )2

00 ,σμN  until the point τ  in time, and 

then follows another normal distribution ( )2
01,σμN . 

The point τ  in which the process shifts to another 
distribution is called change-point. 
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Fig. 1. A X  control chart with a step change in the 
mean: the out-of-control signal is illustrated at 
t=11 while the real time of the change is at t=6 
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Like control charts, the change-point models may be 
employed for either of the phases I or II. In phase I, a 
set of process data are gathered and analyzed for 
detecting any lack of control. Next, assignable causes 
accounted for out-of-control observations are identified 
and removed with their related data. By the time, the 
set of data reflecting expected in-control performance 
are used to estimate the in-control distribution of 
observations, including their mean 0μ and standard 

deviation 0σ . The major task of change-point models in 

this phase is to estimate the time at which the change 
occurrs and parameters 00,σμ . 

Unlike the fixed set of data in phase I, phase II data are 
a never-ending stream which is gathered subsequently. 
Phase I estimated parameters are required to be 
plugged into the phase II calculations.  In this phase, 
the quick detection of probable shifts in process 
parameters is of most importance. Using change-point 
model in phase II leads to two major tasks; a testing 
task and an estimation task. The testing task is to 
decide whether there has indeed been a change, and the 
estimation task, is to estimateτ , the time at which the 
change occurrs and perhaps to estimate one or both of 

the parameters 1μ and 1σ . This paper focuses on 

change-point estimation in phase II of normal 
processes.  
The rest of the paper is organized as follows: In section 
2, we briefly review the literature of change-point 
detection. In section 3 we discuss the philosophy of 
clustering methods application for change point 
estimation. Section 4 explains the proposed 
methodology, and Section 5 examines the performance 
of the proposed method in comparison with some 
traditional methods. Finally, we present conclusions 
and further work in Section 6. 

 
22..  AAnn  OOvveerrvviieeww  ooff  CChhaannggee--PPooiinntt  DDeetteeccttiioonn  

LLiitteerraattuurree  
Samuel et al. [2] considered the use of an 

estimator of the time of the change of a normal process 

once Shewhart X control chart issues a signal. Their 
estimator was derived based on maximum likelihood 
estimator (MLE) of the process location change-point. 
Pignatiello and Simpson [3] investigated a control 
chart based on likelihood ratio approach that not only 
provides speedy detection regardless of the magnitude 
of the process shift, but also supplies useful change-
point statistics. Their chart provides point and interval 
estimates for the time and magnitude of the process 
shift. Hawkins et al. [4] proposed an unknown 
parameter change-point formulation for detecting and 
diagnosing step changes in the process mean when the 
parameters of the process are unknown. Their approach 
is competitive with the Shewhart chart for isolated non-
sustained special causes. Perry et al. [5] compared the 
MLE of the process change point designed for linear 

trends to the MLE of the process change point 
designed for step changes when a linear trend 
disturbance is present. Hawkins and Zamba [6] 
suggested a single control chart using the un-known 
parameter likelihood ratio test for a change in mean 
and/or variance in normally distributed data. Their 
formulation gives a single diagnostic to detect shifts in 
mean, in variance, or in both. They also demonstrated 
that their change-point formulation is competitive with 
the best of traditional formulation for detecting step 
changes in process parameters.  
Samuel et al. [7] proposed a MLE for step changes in 
the variance of a normal process. Hawkins and Zamba 
[8] proposed a variance change-point model, based on 
the likelihood ratio test, for a change in variance with 
conventional Bartlett correction, adapted for repeated 
sequential use. Their approach has good performances 
across the range of possible shifts. Samuel et al. [9] 
proposed a change-point estimator based on the 
likelihood function for the Poisson random variable. 
Perry et al. [10] also proposed a maximum likelihood 
estimator for the change point of a Poisson rate 
parameter without requiring prior knowledge regarding 
the form of the presented effect.  
Pignatiello and Samuel [11] suggested an estimator for 
identifying the time of a step change in the process 
fraction nonconforming. Their proposed change-point 
estimator is the maximum likelihood estimator of the 
time of the step change in the binomial process and can 
be applied after a p or np  chart signals a special 

cause. Perry et al. [12] proposed a maximum-
likelihood estimator for the change point of the process 
fraction non-conforming without requiring knowledge 
of the exact change type a priori. They compared their 
proposed change-point estimator to the maximum-
likelihood estimator for the process change point 
derived under a simple step change assumption. 
Nedumaran et al. [13] proposed a maximum likelihood 
estimator for the time of a step change in a multivariate 
process mean when the observations follow a 
multivariate normal distribution. They showed their 
estimator performs effectively and equally well for all 
process dimensions and shift magnitudes. Zamba and 
Hawkins [14] suggested an unknown-parameter 
likelihood ratio test for changes in the mean of p-
variate normal data and showed that their approach is 
able to control the run behavior despite the lack of a 
large Phase-I sample.  
Zou et al. [15] proposed a control chart based on the 
change-point model that is able to monitor linear 
profiles whose parameters are unknown but can be 
estimated from historical data. This chart can detect a 
shift in the intercept, slope or standard deviation. 
Mahmoud et al. [16] proposed a change point approach 
based on the segmented regression technique for 
testing the constancy of the regression parameters in a 
linear profile data set. Their change point approach is 
based on the likelihood ratio test for a change in one or 
more regression parameters.  
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33..  TThhee  PPhhiilloossoopphhyy  ooff  CClluusstteerriinngg  MMeetthhooddss  
AApppplliiccaattiioonn  ffoorr  CChhaannggee--PPooiinntt  EEssttiimmaattiioonn  

 Change-point models have much in common with 
clustering methods: 1- There are two possible states in 
change-point models, namely the in-control state and 
the out-of-control state, which can be effectively 
considered as two possible clusters (See Fig. 2). 
 

 
Fig. 2. A simultaneous illustrations of in-control and 

out-of-control states and related clusters 
 
2- Similar to clustering methods, change point models 
are used to classify patterns: almost all in-control 
observations can be considered as a random pattern, 
and all out-of-control observations can be characterized 
as a non-random pattern. 3- Like clustering methods, in 
the change point models, an observation is 
characterized as an out-of-control observation based on 
its proximity to the out-of-control state parameters and 
its distance from the in-control state parameters 4- 
There is a close relationship between the control of the 
mean of the process using change-point model and the 
use of between variation in clustering on the one hand, 
and the control of the variance of the process using 
change-point model and the use of within variation in 
clustering on the other hand.  

 
44..  TThhee  PPrrooppoosseedd  CClluusstteerriinngg  MMeetthhooddoollooggyy  
Using traditional change point models and 

clustering algorithms, in this paper we develop a new 
clustering approach to effectively estimate process 
change-point. The performance of the proposed 
approach directly depends on: 1- the structure, 2-the 
similarity measure and 3- the objective function of the 
algorithm.   

 
4-1. The Structure 
The proposed approach has a simple structure: after 
receiving an out of control signal from the control 
chart, it calculates the objective function for a specific 
number of in- and out-of-control clusters’ combinations. 
Next, the algorithm finds the most probable in- and out-
of-control clusters respect to the fitness function, and 
introduces the point in the out-of-control cluster with 
the lowest order as the process change point. In this 
regard, suppose that the control chart produces an out-

of-control signal at time t and the objective is to find 
the pointτ in time that the mean of the process shifts 
form 0μ  to

01 μμ ≠ . According to what we mentioned 

in section 3, two possible in-control and out-of-control 
clusters are considered on such process observations. 
Also, all observations beforeτ  belong to in-control 
cluster and all observations beyond τ  belong to the 
out-of control cluster. As a result, to estimate most 
probableτ , all possible positions of τ are examined 
sequentially based on the proposed objective function, 
and the point by which the proposed objective function 
is minimized is introduced as the change-point. The 
structure of the proposed approach is shown in Fig. 3.  
 
4-2. The Proposed Similarity Measure 
We have conducted extensive simulation studies to 
assess the performance of different similarity measures 
in the estimation of the process change point. In this 
regard, two representatives of distance measures, 
namely Euclidian (one and two dimensional) and 
Mahalanobis distances, and the probability of 
membership to each cluster have been compared to 
each other. In the conducted simulation studies samples 
of size ,  ( 1,5,  and 10)n n =  are randomly generated 

from a normal distribution with 5,100 == σμ for 

subgroups 1 to 100. Then, starting with subgroup 101, 
observations are randomly generated from a normal 
distribution with the mean δ+100  and standard 
deviation 5. This will continue until the control chart 
produces a signal. Then, in each simulation run, the 
comparing similarity measures are used to estimate the 
change-point of the process. For this purpose, the 
representatives of distance measures are employed by 
Fuzzy C-Mean (FCM) algorithm (Bezdek [17]) and 
probability of membership measure is used with the 
proposed objective function which will be discussed in 
the next section. The procedure is repeated 1,000 times 
for each of the values of σσσσδ 2,5.1,,5.0= and σ3 . 

Then the average of estimates is computed to compare 
the performance of the measures. Table 1 illustrates the 
results of the comparison. Regarding the simulation 
results the probability measure outperforms the 
distance measures. It seems that as in SPC and 
consequently the change point models we are working 
with random variables and they inherit probability 
characteristics, the probability measure performs better 
than other measures. It should also be noted that one 
may use other factors to achieve better results. Hence, 
in this study we make use of the probability measure. 
In this regard, for each assumed in- or out-of-control 
clusters we calculate its covered observations’ 
probability of membership as the similarity measure. 
For example, in Fig. 2, we calculate observations 6 to 
12 probability of membership to the out-of-control 
cluster and observations 1 to 5 probability of 
membership to the in-control cluster as their similarity 
measures to related clusters. 
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Fig. 3. The structure of the proposed approach 
 

Tab. 1. The Results of simulation studies for different 
measures comparison 
τˆ  

Method n  
t̂

σ  0.5 1 1.5 2 3 

τˆ  238.4 113.0 82.9 75.2 73.9 
1 

t̂
σ  

159.7 50.3 25.1 26.4 28.2 

τˆ  102.0 74.9 74.9 73.1 71.7 
5 

t̂
σ  

37.6 26.1 27.7 28.5 28.4 

τˆ  81.7 74.5 73.6 72.9 65.4 

One 
Dimensional 
Euclidian 
Distance 

10 
t̂

σ  
23.1 27.7 28.3 27.5 28.8 

τˆ  99.4 66.9 75.6 77.3 77.8 
1 

t̂
σ  

83.0 16.1 4.1 1.7 1.3 

τˆ  68.4 79.4 79.4 79.3 79.2 
5 

t̂
σ  

13.6 1.1 0.7 0.8 0.7 

τˆ  77.5 79.7 79.5 79.4 79.4 

Two 
Dimensional 
Euclidian 
Distance 

10 
t̂

σ  
5.1 0.6 0.6 0.6 0.6 

τˆ  219.3 117.0 84.3 82.4 89.1 
1 

t̂
σ  

165.1 69.5 43.8 33.6 25.1 

τˆ  100.7 82.1 91.7 93.4 96.3 
5 

t̂
σ  

56.3 32.9 21.6 18.4 4.6 

τˆ  2.1 89.5 24.9 95.7 95.3 

Mahalanobis 
Distance 

10 
t̂

σ  
41.9 24.9 24.9 9.6 4.6 

τˆ  103.2 100.0 99.7 99.6 99.4 
1 

t̂
σ  

23.2 8.0 5.4 5.0 5.3 

τˆ  100.1 99.5 99.5 99.7 100.0 
5 

t̂
σ  

6.5 5.2 4.9 3.6 1.4 

τˆ  99.6 99.4 99.8 100.0 100.0 

Probability 
Measure 

10 
t̂

σ  
5.5 5.1 3.4 1.4 0.5 

Since the proposed approach is developed to monitor 
the mean of normal processes, the membership 
probability of each observation to the in-control cluster 
is equal to the probability that the observation follows 

( )2
00 ,σμN  distribution: 

 
( ) ( )( )

( )( ) ( )( )
( )( )⎪⎩

⎪
⎨
⎧

>−≤×

≤≤×
=∈

∈=−∈

0
2
0,0~|2

0
2
0,0~|22

0,0

2
0,0

μσμ

μσμ
σμ

σμ

XNXixXP

XNXixXP
NixP

NixPClusterControlInixP

     (1) 

 
The above probability is similar to the operation 
characteristics function of the distribution parameters 
(Freund [18]). The membership probability of each 
observation to the out-of-control cluster is equal to the 
probability that the observation follows 

( ) 01
2
01 ,, μμσμ ≠N  distribution: 

 
( ) ( )( )

( )( ) ( )( )
( )( )⎩

⎨
⎧

>−≤×
≤≤×

=∈

∈=−−∈

1
2
01

1
2
012

01

2
01

,~|2

,~|2
,

,

μσμ
μσμσμ

σμ

XNXxXP

XNXxXP
NxP

NxPClusterControlofOutxP

i

i
i

ii     (2) 

 
In the above relation 1μ  is estimated by averaging the 

observations in the out-of-control cluster. This 
probability is similar to the power function of the 
distribution parameters (Freund [18]).  
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44--33..  TThhee  PPrrooppoosseedd  OObbjjeeccttiivvee  FFuunnccttiioonn  
Different types of objective functions including: 
entropy function, likelihood function and the logarithm 
of likelihood function have been studied and examined 
for the proposed approach.  
The final structure of the proposed objective function 
which must be minimized by the most probable τ is as 
follows: 

 
( )( )

( )( )∑

∑

=

−

=

−−∈−

−∈−=

n

x
i

x
i

i

i

ClusterControlofOutxP

ClusterControlInxPF

τ

τ

ln

ln
1

1         (3) 

 
Originally the proposed objective function is a 
multiplication of the operation characteristics and 
power functions of observations, which is moderated 
by a logarithm operator. From another point of view 
the above objective function is likelihood function of 
observation membership to in- or out-of-control 
cluster. 

 
  

55..  SSiimmuullaattiioonn  SSttuuddiieess  
 Monte Carlo simulations are conducted to study 
and compare the performance of the proposed 
approach with two most common change-point models 
in the literature, namely Hawkins et al. [4] and Samuel 
et al. [2] methods. Like section 4.2 in the conducted 
simulation studies samples of size 

,  ( 1,5,  and 10)n n =  are randomly generated from a 

normal distribution with 5,100 == σμ for subgroups 

1 to 100. Then, starting with subgroup 101, 
observations are randomly generated from a normal 
distribution with a mean of δ+100  and the standard 
deviation of 5. This will continue until the control chart 
produces a signal. Then, in each simulation run, the 
comparing approaches estimate the change-point of the 
process. The procedure is repeated 10,000 times for 
each of the values of σσσσδ 2,5.1,,5.0= , and σ3 . 

The average of estimates from 10,000 simulation runs 
is computed to compare the performance of the 
proposed approach and other methods. In this regard, 
Table 2 has tabulated the average estimate and the 

standard errors of (τ̂ ) for the comparing methods for 
different sample sizes and different shift sizes. 

 
Tab. 2. Average change-point estimates and associated standard errors for change-point 100=τ  

Change –point estimate Shift Size Row Method Sample 
Size Standard Deviation 0.5 1 1.5 2 3 

Change - point estimate )ˆ(τ  119.27 100.80 99.88 99.64 99.38 
1 

Standard Deviation ˆ( ( ) )tσ  56.15 7.75 5.26 4.65 5.76 

Change - point estimate )ˆ(τ  100.28 99.59 99.50 99.74 99.97 
5 

Standard Deviation ˆ( ( ) )tσ  6.75 4.98 4.96 3.67 1.14 

Change - point estimate )ˆ(τ  99.93 99.45 99.81 99.98 100.00 

1 Hawkins et al. [4] 

10 
Standard Deviation ˆ( ( ) )tσ  4.69 5.14 2.92 0.43 0.06 

Change - point estimate )ˆ(τ  104.45 100.39 99.94 99.70 99.61 
1 

Standard Deviation ˆ( ( ) )tσ  23.07 7.15 3.93 3.71 3.49 

Change - point estimate )ˆ(τ  100.23 99.65 99.65 99.79 99.99 
5 

Standard Deviation ˆ( ( ) )tσ  5.80 4.30 3.62 2.88 0.18 

Change - point estimate )ˆ(τ  99.87 99.62 99.86 99.98 100.00 

2 Samuel et al. [2] 

10 
Standard Deviation ˆ( ( ) )tσ  4.09 3.83 2.04 0.42 0.05 

Change - point estimate )ˆ(τ  103.17 100.01 99.70 99.56 99.42 1 
Standard Deviation ˆ( ( ) )tσ  23.24 7.95 5.36 4.98 5.27 
Change - point estimate )ˆ(τ  100.09 99.48 99.46 99.70 99.96 

5 
Standard Deviation ˆ( ( ) )tσ  6.48 5.22 4.85 3.60 1.37 

Change - point estimate )ˆ(τ  99.60 99.38 99.75 99.96 99.99 

3 
The proposed 

approach 

10 
Standard Deviation ˆ( ( ) )tσ  5.52 5.14 3.38 1.41 0.51 

 
As the actual change-point for simulations occurs at 
time 100, the average estimated time of process 

change,τ̂ , should be close to 100. From Table 2, it can 

be seen that for a process step change of standardized 
magnitude 5.=δ  and sample size 1=n , Hawkins et al. 
[4] estimates the change-point at time 119.27 on 
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average. In this case, the average estimated time of the 
process change is 104.45 by Samuel et al. [2], and 
103.17 by the proposed approach. The same results are 
illustrated for 3,2,5.1,1=δ  in Table 1. The results of 

Table 2 show that the number of subgroups required to 
detect a change in a process parameter by the Hawkins 
et al. [4] method are biased specially for small shifts 
and small sample sizes. For example, if a step changes 
of 5.=δ occurs in the process mean, then using 
individual observations, their method estimates the 
change-point about 19 subgroups after the process 
actual change. On the other hand Samuel et al. [2] and 
the proposed approach work faily close to the real 
change-point. However, the proposed approach works 
slightly better than the Samuel et al. [2] for small 
sample size and small changes, while Samuel et al. has 
a slightly better performance than the proposed 
approach for large sample size and large changes. 
As shown in Table 2, the run length measure of the 
approaches under study has a large standard deviation, 
which makes the comparisons hard.  
Hence, like Samuel et al [2], along with studying the 
run length of different approaches, we calculate the 
observed frequency with which each compared 
estimator of the time of the change is within m  
subgroups of the actual time of the change, 
for 10,...,2,1,0=m , 15 and sample size 1, 5, 10. Since 

the results for various sample sizes are almost similar, 
here we only bring the results for 1=n  (see Table 2 to 
5). These tables provide an indication of the precision 
of the estimators. Typically, the higher the proportion 
of the 10,000 runs in which the estimated time of 
change is within m±  of the actual change, the more 
the precision of the estimator.  
In Table 3 it can be seen that out of the 10,000 
simulations conducted for 5.=δ  and sample size 1, the 
Hawkins et al. [4] method identified the change-point 
exactly, in 7 % of the times. This means that in 7 % of 
the times the approach gives the exact time of the 
change in the process mean without any error. It can be 
also seen that in 15.79% of the trials, the change-point 
was estimated to be within 1± of the actual time of the 
process change. Moreover, in 22.68% of the trials, the 
estimates are within 2± subgroups; in 22.68 % of the 
trials it is within 3±  subgroups and so on. Such 
interpretation is true for the other magnitudes of the 
shifts. Besides, Table 4 calculates 15 confidence 
intervals of Samuel et al. [2] method based on 10,000 
simulations. As it can be seen, the Samuel et al. [2] 
method estimates a change of 1=δ  without any error 
in 25.7% of the times. It can be also seen that in 
47.13% of the times, the change-point was correctly 
estimated to be within 1± .  
Besides, in 60.31% of the times, the estimates are 
within 2± subgroups and so on. Finally within 
subgroups of size 9± and more the probabilities pass 
90% and tend to one. Such interpretation can be 
extended for other magnitudes of the shifts. 

Tab. 3. Confidence Intervals for sample size 1 and 
different magnitudes of changes for Hawkins et al. 

[4] method 
Shift  
 
Probability  0.5 1 1.5 2 3 

P(T=t) 0.070 0.257 0.443 0.607 0.818 

P(|T-t|<=1) 0.158 0.462 0.689 0.835 0.940 

P(|T-t|<=2) 0.227 0.589 0.806 0.916 0.965 

P(|T-t|<=3) 0.276 0.671 0.871 0.950 0.976 

P(|T-t|<=4) 0.320 0.734 0.908 0.967 0.982 

P(|T-t|<=5) 0.360 0.782 0.933 0.977 0.984 

P(|T-t|<=6) 0.398 0.815 0.950 0.982 0.986 

P(|T-t|<=7) 0.427 0.843 0.963 0.985 0.987 

P(|T-t|<=8) 0.458 0.865 0.971 0.988 0.988 

P(|T-t|<=9) 0.485 0.883 0.977 0.989 0.989 

P(|T-t|<=10) 0.506 0.901 0.982 0.990 0.990 

P(|T-t|<=11) 0.548 0.927 0.986 0.992 0.990 

P(|T-t|<=13) 0.566 0.936 0.988 0.993 0.991 

P(|T-t|<=14) 0.584 0.943 0.990 0.993 0.991 

P(|T-t|<=15) 0.600 0.951 0.991 0.993 0.992 

 
Tab. 4. Confidence Intervals for sample size 1 and 

different magnitudes of changes in for Samuel et al. 
[2] method 

      Shifts 
 
Probability 

0.5 1 1.5 2 3 

P(T=t) 0.079 0.257 0.625 0.615 0.824 

P(|T-t|<=1) 0.178 0.471 0.841 0.840 0.948 

P(|T-t|<=2) 0.259 0.603 0.924 0.919 0.971 

P(|T-t|<=3) 0.321 0.687 0.956 0.955 0.979 

P(|T-t|<=4) 0.373 0.750 0.972 0.970 0.984 

P(|T-t|<=5) 0.419 0.794 0.981 0.979 0.987 

P(|T-t|<=6) 0.457 0.832 0.986 0.984 0.989 

P(|T-t|<=7) 0.494 0.859 0.989 0.987 0.991 

P(|T-t|<=8) 0.528 0.884 0.990 0.989 0.992 

P(|T-t|<=9) 0.557 0.903 0.992 0.990 0.993 

P(|T-t|<=10) 0.584 0.916 0.993 0.991 0.993 

P(|T-t|<=11) 0.630 0.941 0.994 0.993 0.994 

P(|T-t|<=13) 0.649 0.948 0.995 0.994 0.994 

P(|T-t|<=14) 0.667 0.954 0.995 0.994 0.995 

P(|T-t|<=15) 0.685 0.961 0.995 0.995 0.995 

 
Table 5 shows the probabilities of correct change-point 
identification within different intervals for the 
proposed approach. For example, it can be seen that 
out of 10,000 simulations conducted for 

1=n and 2=δ , the proposed approach identify the 
change-point exactly 59.87% of the trials. It can also 
be seen that in 82.61% of the trials, the change-point 
was estimated to be within 1± of the actual time of the 
process change. In addition, in 90.87% of the trials, the 
estimates are within 2± subgroups; in 94.29% of the 
trials, it is within 4±  subgroups and so on. Again it 
can be seen that the probabilities are approaching one 
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with an increase in the value of m± . The explanations 
can be extended to other magnitudes of the shifts. 

 
Tab. 5. Confidence Intervals for sample size 1 and 
different magnitudes of changes for the proposed 

approach 
 Shifts 
 
Probability 

0.5 1 1.5 2 3 

P(T=t) 0.082 0.246 0.439 0.598 0.820 

P(|T-t|<=1) 0.182 0.453 0.686 0.826 0.939 

P(|T-t|<=2) 0.266 0.581 0.802 0.909 0.965 

P(|T-t|<=3) 0.323 0.667 0.869 0.943 0.974 

P(|T-t|<=4) 0.374 0.730 0.907 0.963 0.978 

P(|T-t|<=5) 0.414 0.779 0.933 0.971 0.982 

P(|T-t|<=6) 0.460 0.820 0.950 0.977 0.984 

P(|T-t|<=7) 0.491 0.850 0.962 0.981 0.985 

P(|T-t|<=8) 0.524 0.874 0.971 0.985 0.987 

P(|T-t|<=9) 0.559 0.898 0.976 0.986 0.988 

P(|T-t|<=10) 0.581 0.914 0.980 0.987 0.988 

P(|T-t|<=11) 0.631 0.938 0.984 0.989 0.990 

P(|T-t|<=13) 0.654 0.947 0.985 0.990 0.990 

P(|T-t|<=14) 0.674 0.955 0.986 0.990 0.991 

P(|T-t|<=15) 0.691 0.960 0.988 0.991 0.991 

 
In summary, the results of Tables 2, 3, 4 and 5 show 
that there is not any significant difference between the 
proposed approach and the Samuel et al. [2] method. 
Besides, they work better than the Hawkins et al. [4] 
method. In addition, the proposed method acts superior 
to both the Hawkins et al. [4] and the Samuel et al. [2] 
methods for small shifts and small sample sizes, 
however Samuel et al. [2] performs better than the 
proposed approach for large shifts and large sample 
sizes.  

 
66..  CCoonncclluussiioonnss  

Despite numerous applications in process 
monitoring, control charts are not effective tools for 
detecting process real time of change. In this paper, 
based upon clustering techniques, we proposed a new 
approach to detect step-changes in the mean of a 
normal process in phase II.  
We examined the performance of the proposed 
approach and showed that it performs as effectively as 
the popular approaches like the maximum likelihood 
estimator. The proposed approach automatically 
estimates the true values of in and out-of-control 
parameters of the process effectively. Moreover, the 
proposed approach can be effectively used for other 
distributions of the process observations. Finally, the 
approach can be generalized for estimating the time 
step changes in non-normal processes which is planned 
for future work. 
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